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Figure 1: We compute image gradients Idx, Idy and a coarse image Ig using a novel Metropolis algorithm that distributes samples according
to path space gradients, resulting in a distribution that mostly follows image edges. The final image is reconstructed using a Poisson solver.

Abstract

We introduce a novel Metropolis rendering algorithm that directly
computes image gradients, and reconstructs the final image from
the gradients by solving a Poisson equation. The reconstruction is
aided by a low-fidelity approximation of the image computed dur-
ing gradient sampling. As an extension of path-space Metropolis
light transport, our algorithm is well suited for difficult transport
scenarios. We demonstrate that our method outperforms the state-
of-the-art in several well-known test scenes. Additionally, we ana-
lyze the spectral properties of gradient-domain sampling, and com-
pare it to the traditional image-domain sampling.
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1 Introduction

The evaluation of path-space light transport integrals requires costly
numerical techniques such as stochastic sampling with high sample
counts to avoid noise, especially in the face of complex reflection
phenomena involving multiple bounces, glossy reflection, and chal-
lenging visibility. An algorithm such as Metropolis light transport
[Veach and Guibas 1997] seeks to improve efficiency by focusing
samples in regions of path space with high contributions to the final
image. A Markovian process mutates paths so that the final den-
sity is proportional to the throughput of paths, which makes it easy
for the algorithm to locally explore regions that are hard to find be-
cause they have a small measure but have high contribution. Unfor-
tunately, the algorithm also needs to use many samples in smooth

parts of path space where radiance is high but does not vary much.
In this paper, we build on the intuition that information in images is
concentrated around edges and other variations, and present a new
Metropolis light transport approach that seeks to concentrate sam-
ples on paths that contribute highly to the gradient of the image.

Our approach is to directly compute estimates for the horizontal
and vertical finite-difference gradients of the image, in addition to
a coarse estimate of the image itself. We then use a Poisson solver
to produce a final image that best matches these estimates. This
process is illustrated in Figure 1. In order to compute the gradients,
we extend the notion of path space so that each of our samples cor-
responds to a pair of paths reaching neighboring pixels. To guar-
antee that both the gradients and the coarse image are adequately
sampled, we drive a Metropolis sampler according to how much a
sample contributes to each. This results in a high density of samples
around image edges, as shown in Figure 1. Our algorithm is unbi-
ased when the final image is reconstructed using a linearL2 Poisson
solver, but we also show that the performance and robustness can
be further improved by using a non-linear L1 reconstruction.

We must pay mathematical care to the measure in path space to en-
sure the correctness of our integrator. Starting with the equation for
the gradient as a difference between the two path-space integrals for
neighboring pixels, we turn it into a single integral over one pixel
by defining a shift function that maps paths going through a pixel
i to paths going through one of its neighbor j, in a manner similar
to Veach and Guibas’ lens mutations [1997]. This allows us to ex-
press the gradient as a single integral over the main pixel i alone,
and reveals that the Jacobian of the shift function must be taken into
account. We observe that carefully crafting the shift function can
be important for robust treatment of difficult near-specular cases.

Finally, we analyze the balance between gradient and throughput
sampling and its effect on the frequency spectrum of the error. In-
tuitively, taking the gradient squeezes the regions of high contribu-
tion towards discontinuities, making it harder for the sampler to find
the relevant portions of path space. Our analysis shows that in our
test cases this added difficulty is offset by the fact that the gradients
contain less energy than the actual image.

Our approach is complementary to recent improvements in Metro-
polis light transport. In particular, we greatly benefit from Jakob
and Marschner’s manifold exploration [2012] because our method
successfully focuses high-density sampling to a small part of path
space, making it all the more important to be able to stay on the
narrow manifold of high-contribution paths.
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2 Related Work

Physically-based Light Transport Physically based light trans-
port algorithms render images by integrating over all possible paths
that light can take from the source to the sensor. Veach and
Guibas [1997] formulate the rendering equation as

Ij =

∫
Ω

hj(x̄)f∗(x̄) dµ(x̄). (1)

Unbiased Monte Carlo rendering algorithms sample the space of
light paths to compute these integrals numerically. The result Ij is
the intensity of the jth pixel, Ω is the space of all light paths of finite
length (path space), hj is the pixel filter of the jth pixel, and f∗(x̄)
is the spectral image contribution function representing the amount
of light reaching the sensor through a given path x̄ in a given wave-
length. A path x̄ of length k consists of a sequence of vertices
x0, . . . ,xk, and dµ(x̄) is the area product measure

∏k
i=0 dA(xi).

Adaptive Sampling and Reconstruction Several Monte Carlo
light transport techniques aim to adaptively sample light transport
“where it matters”, followed by a subsequent image reconstruction
step. Several techniques sparsely sample radiance and its gradi-
ents, and employ higher-order interpolation to save on the number
of samples that need to be shaded, e.g. [Ward and Heckbert 1992;
Dayal et al. 2005; Ramamoorthi et al. 2007]. We focus on the fi-
nite differences of path throughput between pixels, and do not an-
alytically reason about the underlying factors that give rise to the
gradients. Rousselle et al. [2011] present state-of-the-art results
in screen-space adaptive sampling and reconstruction. Bolin and
Meyer [1995] directly estimate the DCT coefficients of the image
based on point samples, and stop when a block is estimated to be
represented faithfully. In a similar vein, Overbeck et al. [2009] use
a wavelet decomposition to estimate whether the variance in the
samples is due to visible image features or sharp path space fea-
tures that will result in a smooth image when integrated, in which
case they smooth the result. Several recent algorithms rely on fre-
quency analysis for highly efficient sampling of individual effects
[Soler et al. 2009; Egan et al. 2009]. All of the above algorithms
are biased.

In their Multidimensional Adaptive Sampling algorithm (MDAS),
Hachisuka et al. [2008] sample the light transport integrand in re-
gions of contrast determined from local neighborhoods of samples,
and produce a piecewise constant approximation to the integrand
through a k-D tree. The reliance on the tree makes the algorithm
suffer from the curse of dimensionality, excluding several use cases
such as multiple bounces of indirect light. Further, the piecewise
constant approximation introduces bias. Similar to their technique,
our algorithm distributes samples along path space boundaries.

Gradient-Domain Image Processing Image gradients are a
powerful and popular tool for image editing [Pérez et al. 2003;
Georgiev 2005], panorama stitching, style transfer, and other ap-
plications too numerous to list here. We employ similar machinery
to determine the primal image from computed gradients by solv-
ing a Poisson equation. Like Bhat et al. [2010], we also employ a
coarse primal image to aid the reconstruction of low frequencies.

Natural Images It is well known that gradients of natural images
tend to be sparse [Ruderman 1994]. As a result, the gradients pro-
vide a succinct representation for the image. The power spectrum
of natural images is also known to be approximately inversely pro-
portional to the square of frequency, which means that the gradients
can be expected to contain much less energy than the original im-
age. Inspired by this, we compute the gradients directly in hopes of

making the most of our sample budget. Interestingly, Tumblin et al.
[2005] envision a camera that directly captures gradient images.

2.1 Metropolis Sampling

Markov Chain Monte Carlo (MCMC) methods are used for drawing
samples from high-dimensional functions that are difficult or im-
possible to sample directly. They start with an initial state x0 and,
at each iteration t, apply a random change to the current state xt to
obtain the next state xt+1. If the transition function K(s1 → s2)
denotes the probability density of going from state s1 to state s2
and µ is a throughput measure, the distribution of xt+1 is given by:

pt+1(x) =

∫
Ω

K(y→ x)pt(y)dµ(y). (2)

With mild conditions on K, the distributions pt will converge to a
stationary equilibrium distribution p∗.

The Metropolis-Hastings algorithm [Metropolis et al. 1953; Hast-
ings 1970] constructs a Markov chain with f as the equilibrium
distribution by crafting a special transition function K given a ten-
tative transition function T (see [Veach and Guibas 1997] for re-
quirements concerning T ). Given the current state xt, MH gener-
ates a new candidate sample x′ with probability T (xt → x′) and
defines the next state xt+1 as x′ with probability a(xt → x′), and
as xt otherwise, where

a(x→ y) = min

{
1,
f(y)T (y→ x)

f(x)T (x→ y)

}
. (3)

The generated samples will be distributed according to f only in
the limit for t tending to infinity, unless the initial distribution p0

coincides with f . This problem is known as start-up bias, and in
context of light transport it is easiest avoided by starting from an
approximate equilibrium distribution computed using another sam-
pling algorithm [Veach and Guibas 1997].

Integration Using Metropolis Sampling The ability of the MH
algorithm to produce samples distributed with f(x) makes it easy
to compute integrals:∫

g(x) dx ≈ 1

N

N∑
i=1

g(xi)

p∗(xi)
=
C

N

N∑
i=1

g(xi)

f(xi)
. (4)

Here g(x) is an arbitrary function, xi ∼ p∗(x) = f(x)/C, and C
is the integral of f estimated using other means, usually standard
Monte-Carlo integration. Note that while f(x) has to be a scalar
function, g(x) can be vector-valued. We call f(x) the sampling
target function and g(x) the integrand.

Metropolis Light Transport The Metropolis light transport al-
gorithm [Veach and Guibas 1997] directly applies Equation 4 to
Equation 1 in the space Ω of light paths:

Ij ≈
C

N

∑
i

hj(x̄i)f
∗(x̄i)

f(x̄i)
, (5)

where the sampling target function f(x̄) is the scalar luminosity of
f∗(x̄). The same path samples x̄i are used for estimating the inte-
grals for all pixels. To bootstrap the algorithm, Veach and Guibas
select an initial path with bidirectional path tracing. While in usual
MLT f∗ and f are related in this simple manner—in particular, for
a monochromatic rendering f∗ equals f—the above makes it clear
there is more freedom: we can drive the sampler using one func-
tion but integrate another. This is well known [MacKay 2003],

95:2        •        J. Lehtinen et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 95, Publication Date: July 2013



Figure 2: A motivating example to illustrate the principle of our algorithm with simplified soft shadow computation in one-dimensional
setting. In the integrand plots, the horizontal axis denotes pixels and vertical the position on a light source. The top row shows how a
traditional MLT algorithm distributes the samples and computes the result, while the bottom row shows the same for our algorithm. See
Section 3 for a detailed explanation.

but in graphics it seems to only have applied by Hoberock and
Hart [2010], whose MLT algorithm alters the screen distribution
of paths using importance functions.

Veach and Guibas propose several mutation schemes that act on the
path itself, resulting in a set of paths eventually distributed propor-
tional to f(x̄). The path space formulation allows for very flexible
mutation strategies, but unfortunately, Ω has a complex structure
and it can be challenging to compute probabilities for the tentative
transitions. In order to simplify the space of integration, Kelemen
et al. [2002] introduced primary sample space mutations. Their for-
mulation allows symmetric mutations, removing the need to com-
pute transition probabilities; however, some power is lost compared
to path space mutations. Jakob and Marschner [2012] introduce a
new mutation strategy, manifold exploration, that substantially im-
proves the treatment of specular and highly glossy paths.

Energy-redistribution path tracing (ERPT) [Cline et al. 2005] is
a variant of MLT that uses a very large number of short Markov
chains. This allows them to use smaller perturbations than would
be feasible in traditional MLT implementations, and potentially im-
proves local exploration properties.

3 Overview

Our goal is to concentrate rendering effort in regions of change in
the image. Our main idea is to compute image gradients directly, in
addition to a coarse estimate of the image itself, and subsequently
reconstruct the final image from these by solving a screened Pois-
son equation [Bhat et al. 2010]. We seek finite differences between
pixels, not analytic (infinitesimal) derivatives of the image function.
They would not benefit us, because we explicitly seek to capture the
finite gradients caused by visibility and other discontinuities.

Figure 2 illustrates our approach in a simple one-dimensional
scenario, where we integrate direct illumination from a partially
blocked area light source. The integrand is a two-dimensional func-
tion that determines incident radiance for each screen position (x
coordinate) and light source position (y coordinate). For each x,
we integrate over y to find the total illumination, and these results
are further integrated with box filters associated for each pixel (de-
noted by dashed vertical lines). Traditional Metropolis sampling

(top row, Figure 2) distributes samples according to the magnitude
of the integrand. Using a box filter, the final result is obtained by
simply counting the samples that land in each pixel. The result is
noisy even in the region where the true solution (top right) is flat.

While we want to concentrate our sampling on the gradients, we
also want the coarse image to be of sufficient quality. We thus use
the Metropolis-Hastings sampling to distribute our samples accord-
ing to a target function that takes both the change in the integrand
and its value into account. As illustrated in the bottom row of Fig-
ure 2, each of our samples consists of a pair of paths that measures
the integrand in two locations one pixel apart. The final result (bot-
tom right) captures the changed region faithfully, while remaining
less noisy on the smooth part of the domain.

Working in the path integral formulation, we apply the same princi-
ple to the high-dimensional domain of light paths. We rewrite im-
age gradients through path-space integrals by introducing a func-
tion that deterministically shifts a segment of a light path by one
pixel (Section 4), and also note that driving the Metropolis-Hastings
sampler by a combination of the gradient and primal path through-
put is beneficial. Crucially, we must also account for the differ-
ence of path space measures by computing the Jacobian of the shift
function (Section 5). Finally, we reconstruct the image by solving
a screened Poisson equation (Section 6).

4 Gradient-Domain Light Transport

This section derives a path-space integral formulation for direct ren-
dering of image gradients (Sec. 4.1) and describes how to use a
Metropolis sampler for computing the gradients (Section 4.2).

4.1 Path-Space Gradients

We aim to compute image gradients, i.e., the pixelwise differences
along the x and y directions in image space without computing the
primal image first. We define the differences as Idx

j = Ij+1 − Ij
and analogously for the y dimension. This section details how these
can be written as a path-space integral analogous to Equation 1.

Let us first rewrite the measurement Ij+1 in terms of a change
of integration variable, i.e., in terms of paths at pixel j instead
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Figure 3: Our base path corresponds to the traditional path used in
bidirectional path tracing or MLT. In order to be able to compute
path space gradients, we also have, for each base path, an offset
path, which is—in absence of specular surfaces—constructed by
perturbing the base path by one pixel, and then connecting the new
primary hit to the secondary hit of the base path.

of j + 1. Let the screen coordinates of path x̄ be (sx, sy). We
define a shift function Tδx,δy (x̄) that deterministically modifies
the input path such that the resulting path intersects the screen at
(sx+δx, sy +δy). In absence of specular surfaces, the shift is sim-
ilar to Veach’s lens mutation, albeit deterministic (Figure 3). Now,

Ij+1 =

∫
Ω

hj+1(x̄)f∗(x̄) dµ(x̄)

=

∫
T−1
1,0 (Ω)

hj+1(T1,0(x̄))f∗(T1,0(x̄)) dµ(T1,0(x̄))

=

∫
Ω

hj+1(T1,0(x̄))f∗(T1,0(x̄))
d{µ ◦ T1,0}

dµ
(x̄)dµ(x̄)

=

∫
Ω

hj(x̄)f∗(T1,0(x̄))
d{µ ◦ T1,0}

dµ
(x̄) dµ(x̄). (6)

The first row is essentially Equation 1. The second row is a no-
operation obtained from the first by shifting the paths to one di-
rection but integrating over path space shifted in the opposite direc-
tion. The third row is the change of variables from inversely-shifted
paths to the original path space, which necessitates accounting for
the change in the density of the measure through the Jacobian de-
terminant d{µ ◦ T1,0}/dµ of the shift function (cf. Section 5 for
details); and finally, the fourth row is obtained by observing that
hj+1(T1,0(x̄)) = hj(x̄). Finally, the difference is obtained from

Idx
j = Ij+1 − Ij =

∫
Ω

hj(x̄)

=f1,0(x̄)︷ ︸︸ ︷[
f∗(T1,0(x̄))

d{µ ◦ T1,0}
dµ

(x̄)− f∗(x̄)

]
dµ(x̄). (7)

In the bracketed expression f1,0(x̄) the subscripts have the same
meaning as in the definition of T , i.e., it is a function evalu-
ated through shifting the horizontal screen coordinate of path x̄ by
one pixel to the right, computing the throughput of the resulting
path, multiplying by the Jacobian determinant, and subtracting the
throughput of path x̄. Figure 4 shows what happens if one fails to
account for the Jacobian determinant.

This completes the first stage of the derivation: given a path x̄, we
can compute its differential contribution to image gradients with re-
spect to T . Moreover, integration over all light paths in the fashion
of Equation 1 gives us the image-space gradient. Vertical differ-
ences are obtained through the same steps using T0,1 instead of
T1,0. Note that it is simple to write the difference also to the op-
posite direction, i.e., using negative shifts T−1,0 and T0,−1 instead,
and we will be utilizing this freedom below.

Ground truth With Jacobian Without Jacobian

Figure 4: Ignoring the change in path space measure can lead to
highly visible artifacts.

4.2 Metropolis Sampling of Gradients

We compute the integrals in Equation 7 using Metropolis sampling.
The process is largely analogous to standard path-space MLT, with
some simple but important changes that necessitate extending the
traditional path space.

4.2.1 Extended Path Space

Each pixel in our result contains both horizontal and vertical finite
differences, i.e., the result consists of one color image for each.
We compute the horizontal and vertical differences simultaneously
by using a single chain that randomly alternates between the two
directions. To this end, we extend the path space with two bits
that determine the axis and direction along which the path is to be
shifted. We denote the new path space by

Ω′ = Ω× {(+1, 0), (−1, 0), (0,+1), (0,−1)}. (8)

Its elements, extended paths z̄ = {x̄, δx, δy}, contain a base path
x̄, and two shift direction bits. The corresponding offset path is
computed by Tδx,δy (x̄), with T defined as in Section 4.1.

We use only mutators designed for traditional MLT for sampling
base paths; we have not attempted to formulate specialized muta-
tors particularly for sampling gradients. Specifically, this means
that when proposing a mutated extended path z̄′, its base path x̄′

is sampled by a traditional mutator. Also the axis and direction are
part of the Metropolis-Hastings sampler state, and are chosen ran-
domly when a mutation is proposed. Building on an existing MLT
implementation and its capability to compute T (x̄ → x̄′), compu-
tation of the tentative transition probability T (z̄ → z̄′) is simple
because the proposals for the shift direction are uniform among the
four alternatives.

4.2.2 Reversibility and Negative Offsets

We employ both negative and positive offsets because the mutators
designed for traditional MLT can never propose samples where base
path throughput f∗(x̄) is zero. Such paths exist, e.g., in shadow
boundaries of direct lighting, and are not reachable by the Markov
chain. However, f∗(x̄) = 0 does not imply fδx,δy (x̄) = 0; even
if the base path carries no light, the offset path may have a positive
throughput and thus contribute to the gradients. We employ posi-
tive and negative offsets precisely to enable sampling of all pairs of
paths one pixel apart where at least one of the paths carries light.

Whenever both the base and offset paths are unblocked, they can
be sampled with both positive and negative offsets, and conse-
quently they contribute to the resulting finite differences twice—
once through the forward and once through the reverse differences.
We call these situations reversible shifts, and to ensure proper nor-
malization of the result, the integrand must be divided by two in
these cases. For extended paths where the offset path is blocked,
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the integrand is left as-is to account for the fact that the path pair
can only be sampled from one direction.

4.2.3 Integrand and Signs

Combining Sections 4.2.1 and 4.2.2, we can finally formulate the
integrand for sampling gradients. We first define a generalized
throughput function f∗(z̄) by

f∗(z̄) = n(z̄)


f1,0(x̄), (δx, δy) = ( 1, 0)

−f−1,0(x̄), (δx, δy) = (−1, 0)

f0,1(x̄), (δx, δy) = ( 0, 1)

−f0,−1(x̄), (δx, δy) = ( 0,−1)

, (9)

where n(z̄) = 1
2

if both the base and offset paths are unblocked,
and 1 otherwise. The function fδx,δy (x̄) is defined in Equation 7.

When the path z̄ sample is accumulated, it needs to be recorded to
the correct gradient image (horizontal or vertical) based on which
of δx, δy is non-zero. Paths with δx = −1 or δy = −1 estimate
the finite difference Ij − Ij−1 instead of Ij+1 − Ij , so we need
to accumulate them into pixel j − 1. Formally, this can be written
through extended pixel filters hxj (z̄) and hyj (z̄) that only respond to
horizontal and vertical differences:

hxj (z̄) =


hj(x̄), (δx, δy) = ( 1, 0)

hj+1(x̄), (δx, δy) = (−1, 0)

0, δx = 0

(10)

and similarly for the vertical differences. The filters respond in the
usual way to path pairs with a positive offset, but with a negative
shift of one pixel for path pairs sampled in the negative direction.
The final integrands are then hxj (z̄)f∗(z̄) and hyj (z̄)f∗(z̄) for all j.

4.3 Coarse Estimate of the Image

Although it would be possible to reconstruct the final image based
on the gradients alone—assuming that we also have an estimate
of the overall image brightness—one can expect problems due to
drift: small errors in the gradients can pile up over large distances,
resulting in visible low frequency error in the final image. For this
reason, we output a coarse estimate Ig of the primal domain image
in addition to the gradients. This can be done at practically no cost
during Metropolis sampling, since we already know the throughput
of each base path x̄ by virtue of having computed f∗(z̄) for the
corresponding extended path. Forming Ig is then only a matter of
accumulating 1

4
hj(x̄)f∗(x̄)/f(z̄) for each extended path z̄, where

f(z̄) is the target function driving the sampler. The factor 1
4

is due
to the fact that each base path appears 4 times in our extended path
space, so we need to divide its contribution accordingly.

4.4 Target Function

We drive the Metropolis samples by a target function that is a
combination of both generalized throughput f∗(z̄) and base path
throughput f∗(x̄). Both of these functions are multispectral, and
additionally f∗(z̄) can be negative. As Metropolis-Hastings re-
quires a non-negative scalar target function f(z̄), we combine the
luminance of their absolute values as follows:

f(z̄) = ||f∗(z̄)||+ α

(
1

4
||f∗(x̄)||

)
, (11)

where α is a free parameter that controls the relative importance of
the two terms. The choice of α affects the spectral characteristics
of the approximation error in the final image—we defer the further

a) b)

Figure 5: a) We treat near-specular BSDFs as specular (top),
and rough glossy BSDFs as non-specular (bottom). b) Offset path
generation when (near-)specular surface interactions are present
both before and after the first non-specular vertex. In this exam-
ple, Se = {x̃1, x̃2}, Sm = {x̃3}, and unchanged suffix path is
{x4,x5}.

analysis to Section 8. By using this target function our estimates are
unbiased because f(z̄) 6= 0 whenever f∗(x̄) 6= 0 or f∗(z̄) 6= 0.

Using the absolute value of the path-space gradient does not di-
rectly correspond to distributing the samples according to the final
image gradient, which is an integral over all pairs of paths that con-
tribute to the pixel. This is easy to see: the image gradient can
end up being zero when multiple positive and negative contribu-
tions from different paths cancel each other out. While the sampler
cannot know this in advance, it does, however, concentrate on the
higher-dimensional boundaries within path space similar to MDAS
[Hachisuka et al. 2008].

5 Shift Function and Its Jacobian

In this section we describe our shift function in detail and derive
an explicit form for the determinant of its Jacobian. Our result is
valid for perspective cameras, both pinhole and thin-lens. In accor-
dance to standard nomenclature, a specular surface interaction is
one that scatters light into a discrete set of directions, correspond-
ing to a Dirac BSDF. A non-specular interaction may be either per-
fectly diffuse or glossy. Like Jakob and Marschner [2012], we clas-
sify glossy interactions as either specular or non-specular for the
purposes of the shift function, based on the sharpness of the corre-
sponding BSDFs (Figure 5a).

5.1 Shift Functions

To simplify the notation, in this section we number the path vertices
in a non-standard fashion starting from the camera. We denote the
vertices of the base path x̄ by {x0,x1, . . . ,xk}, where x0 is the
camera vertex, x1 is the primary hit, and xk is the light source ver-
tex. We denote the vertices of the offset path T (x̄) by x̃i. Further,
we denote the screen coordinates of path x̄ by s = (sx, sy), and
note that the primary hit is a function of s, i.e., x1 = x1(s), when
we consider x0 (and the possible aperture parameter) to be fixed.

The purpose of the shift functions T (x̄) is to deterministically alter
the path x̄ such that its screen coordinates s change by one pixel
in the desired direction, with the camera vertex x0 staying fixed.
While this is trivial in cases of non-specular transport—we merely
change the direction of the primary ray, trace a ray to determine the
new primary hit, and connect the next, unchanged path vertex to
it—the specular case is significantly more involved.

Clearly, if the primary hit x1 lies on a specular surface, moving x1
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Image Lens (#samples) Manifold (#samples)

Figure 6: When offset paths are perturbed only until the first non-
specular vertex (similar to the lens mutator), the throughputs of off-
set paths with non-empty second specular chains Sm become zero,
causing apparent gradients and leading to wasted samples on areas
that do not actually need them. Perturbing a longer portion of the
path, similarly to the manifold mutator, alleviates this issue. Here,
the Cornell box was modified by turning the taller box into a mirror
and shrinking the light source to make the features more obvious.

but keeping the following vertices constant would cause the path to
carry no light. Therefore we propagate the change deterministically
along the specular chain until a non-specular vertex xb is found,
similarly to Veach and Guibas’ lens mutator [1997]. Although this
is a valid shift function, it is not always efficient (Figure 6) because
if xb is followed by another specular vertex, the specular chain of
vertices between x̃b and the next non-specular vertex xc carries no
light. Thus we further perturb the chain deterministically such that
the specular chain ending at xc correctly starts at x̃b, relying on
Jakob and Marschner’s [2012] manifold perturbation. If it happens
that the shift moves the path off the specular manifold, the through-
put of the offset path is defined to be zero.

In a general case the offset path T (x̄) consists of four parts (Fig. 5):

1. The unchanged camera vertex x0;

2. The specular eye chain Se = {x̃1, . . . , x̃b} terminating on a
non-specular vertex x̃b;

3. The possible second specular chain Sm = {x̃b+1, . . . , x̃c−1}
following the first non-specular vertex; and finally

4. The unchanged suffix path {xc, . . . ,xk}.

The changed portion of the path is thus {x̃1, . . . , x̃b, . . . , x̃c−1},
where x̃b is a non-specular vertex and the rest are either purely
or nearly specular. Because the propagation is deterministic, the
shifted positions of the vertices in both Se and Sm are functions
of the screen coordinates of the base path. A common special case
is when the primary hit lands on a non-specular surface and is fol-
lowed by a non-specular vertex (Se = {x̃1}, Sm = ∅, c = 2).

Following Jakob and Marschner [2012], the vertex positions in
(near-)specular chains can be characterized in terms of constraint
functions ci(xi−1,xi,xi+1) that compute the (generalized) half-
vector oi at vertex i and project them to the tangent plane of the
vertex. When the vertex positions are in specular configuration,
ci = 0. Importantly, any path can be characterized equivalently
by the vertex positions or the vectors oi and two vertex positions.
Jakob and Marschner define the manifold perturbation as a function
that keeps the offsets constant when the free vertices are moved.

5.2 Jacobian

We are now ready to compute the Jacobian determinant in Equa-
tion 7. Let ∂x̃i/∂xj denote the 2 × 2 matrix of partial derivatives
of the local, orthogonal tangent plane coordinates of vertex x̃i with

respect to the coordinates of xj . The required Jacobian is com-
puted by assembling the blocks for each combination of i, j into a
2(c− 1)× 2(c− 1) matrix and computing its determinant:

dµ(T (x̄))

dµ(x̄)
=

∣∣∣∣ ∂x̃i∂xj

∣∣∣∣
ij

, i, j = 1, . . . , c− 1. (12)

We drop the index ranges for clarity from here on, and let expres-
sions like (∂x̃i/∂xj)ij denote matrices consisting of one 2 × 2
block of partial derivatives for each combination of the indices. Be-
cause the suffix path is unchanged, we only need to account for
terms involving the vertices that change in the shift. We now write
the base and offset paths in terms of the offsets and the position of
the middle non-specular vertex xb:

{x1, . . . ,xc−1} ≡ {o1, . . . ,xb, . . . ,oc−1} := O

{x̃1, . . . , x̃c−1} ≡ {õ1, . . . , x̃b, . . . , õc−1} := Õ.

Denoting the components of O by Ol (resp. Õ, Õk), the chain rule
gives∣∣∣∣ ∂x̃i∂xj

∣∣∣∣
ij

=

∣∣∣∣ ∂x̃i∂Õk

∂Õk

∂Ol

∂Ol

∂xj

∣∣∣∣
ij

=

∣∣∣∣ ∂x̃i∂Õk

∣∣∣∣
ik

∣∣∣∣∂Õk

∂Ol

∣∣∣∣
kl

∣∣∣∣∂Ol

∂xj

∣∣∣∣
lj

.

(13)
Let us first deal with the middle term, the matrix of partial deriva-
tives of the constraints. Because the manifold perturbation, by def-
inition, keeps the offsets the same, i.e., õi = oi, the matrix has a
simple structure: it is all identity, with the exception of the diag-
onal 2 × 2 block that corresponds to ∂x̃b/∂xb; consequently, its
determinant is simply |∂x̃b/∂xb|. Writing the middle non-specular
vertex as a function of the screen coordinates s and employing the
chain rule again, we have∣∣∣∣ ∂x̃i∂xj

∣∣∣∣
ij

=

∣∣∣∣ ∂x̃i∂Õk

∣∣∣∣
ik

∣∣∣∣∂x̃b∂s ∂s

∂xb

∣∣∣∣ ∣∣∣∣∂Ol

∂xj

∣∣∣∣
lj

=

(∣∣∣∣∂x̃b∂s
∣∣∣∣ ∣∣∣∣ ∂x̃i∂Õk

∣∣∣∣
ik

)(∣∣∣∣∂xb∂s
∣∣∣∣ ∣∣∣∣ ∂xj∂Ol

∣∣∣∣
jl

)−1

. (14)

The two terms in the parentheses are precisely analogous, and can
be computed separately for the base and offset paths. The 2 × 2
matrix ∂xb/∂s can be computed by

∂xb
∂s

=
∂xb
∂x1

∂x1

∂s
=

∂xb
∂ω⊥0

∂ω⊥0
∂x1

∂x1

∂s

=
G(x0 ↔ x1)

G(x0 ↔ . . .↔ xb)

∂x1

∂s
, (15)

and similarly for the terms related to the offset path. Here
∂ω⊥0 /∂x1 = G(x0 ↔ x1) is the classical geometry term [Veach
and Guibas 1997], and G(x0 ↔ . . . ↔ xb) is the generalized ge-
ometry term [Jakob and Marschner 2012].

Finally,

∂x1

∂s
=
‖x1 − x0‖2 cos3 θ0

cos θ1
,

which is obtained by projecting
from x1 to a sphere centered at
x0, and projecting from the sphere
to the view plane.

The above derivation is valid in the general case of sequences
of nearly but not perfectly specular surfaces. Like Jakob and
Marschner, we eliminate pure specular vertices from the equations
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Image Ground truth L1 L2

Figure 7: L1 reconstruction is superior to L2 in the proximity of
poorly sampled bright features, such as directly visible light sources
or outlier pixels where a Markov chain got stuck for an extended
time. Here, also direct lighting was computed using Metropolis
sampling, and an insufficient number of samples is deliberately
used to emphasize the difference.

because this corresponds to an essentially lower-dimensional inte-
gration domain. This affects the computation of the determinants
|∂xj/Ol| and |∂x̃i/Õk|, and path throughput f(x̄). The computa-
tion of the determinants |∂xj/Ol| and |∂x̃i/Õk| is somewhat in-
volved, but fortunately the same term is employed in the manifold
perturbation, and the existing implementation in Mitsuba [Jakob
2012] can be reused without modification.

In the common special case of the primary hit lying directly on a
non-specular surface and followed by a non-specular vertex, O =

{x1}, Õ = {x̃1}, and the entire Jacobian reduces to

∂x̃1

∂s

(
∂x1

∂s

)−1

=
‖x̃1 − x̃0‖2

‖x1 − x0‖2
cos θ1

cos θ̃1

cos3 θ̃0

cos3 θ0
.

6 Image Reconstruction

Once we have the gradient images Idx and Idy and a rough estimate
of the actual image Ig , we use a screened Poisson solver to find the
image I whose gradients best match the inputs in L2 sense [Pérez
et al. 2003; Bhat et al. 2010]. This can be written as

argmin
I

(∥∥∥∥∥
(
HdxI

HdyI

)
−

(
Idx

Idy

)∥∥∥∥∥
2

2

+ ‖α (I − Ig)‖22

)
. (16)

Here Hdx, Hdy are matrices that take finite differences along both
rows and columns and returns appropriately vectorized gradients.
Solving the Poisson equation in this way is a linear operation. α
determines the relative weighting of the primal and gradient im-
ages in the reconstruction. While one could use a different α for
the target function (Equation 11) and reconstruction (Equation 16),
we have observed that best results are obtained by using the same
weight for both. Section 8 presents a detailed analysis of the role of
α and the spectral characteristics of the result.

Claim. The resulting image is unbiased. Proof. Let S(Idx, Idy, Ig)
denote the screened Poisson solution operator, and let E be the ex-
pected value operator. Both are linear. Let R be the true solution
image. Since our samplers are unbiased, we have, by definition,
E[Idx] = Hdx(R), E[Idy] = Hdy(R), and E[Ig] = R. Because
the screened Poisson equation is invertible, S perfectly recovers R
from its gradients: S(Hdx(R), Hdy(R), R) = R. Since expecta-
tion commutes with fixed linear operators, we have

E[S(Idx, Idy, Ig)] = S(E[Idx], E[Idy], E[Ig]) =

S(Hdx(R), Hdy(R), R) = R, (17)

i.e., the expected value of the solution is the true image.

L1 Reconstruction Our gradient estimates may contain large-
magnitude errors especially with lower sampling rates and within
the proximity of very bright objects or pixels where Markov chains
got stuck for a longer time. The L2 solution effectively spreads the
error due to such outliers on large areas in the image. Due to its bet-
ter resilience, we have found it preferable to use L1 optimization
instead [Levin et al. 2004]. Figure 7 demonstrates the difference
between L1 and L2 reconstruction. However, since L1 optimiza-
tion is non-linear, the result is not guaranteed to be unbiased. In
most practical cases the differences in image quality are small (1–
2 dB in our tests), and L1 is consistently better both numerically
and perceptually. The time taken by L2 reconstruction is negligi-
ble compared to rendering, and even the L1 optimization takes less
than 10 seconds for 720p images.

7 Results

We have implemented our algorithm as an extension to the pub-
licly available Mitsuba renderer [Jakob 2012]. We will compare
against unbiased rendering methods: path-space MLT (VMLT), pri-
mary sample space MLT (KMLT), energy-redistribution path trac-
ing with bidirectional seeding (ERPT), and bidirectional path trac-
ing (BDPT), all of which are available in Mitsuba. Our test plat-
form is a 6-core 3.33GHz Intel Core i7 with 24GB of memory. All
full-resolution result images are available on the project web page.

We have five test scenes. SIBENIK and DOOR (Figures 9 and 10)
feature difficult light transport: light enters the visible rooms
through narrow openings. TORUS (Figure 11) embeds a non-
specular object inside a solid glass cube, which is a well-known
difficult scenario for unbiased light transport algorithms. The other
two scenes, LAMP and SPONZA (Figures 8 and 12), feature simpler
light transport, and are used mainly to demonstrate various details.

The ground truth images were rendered using BDPT, except in
SIBENIK, DOOR and TORUS where BDPT would have taken days
or weeks to converge. In these scenes we used 12-hour VMLT ren-
derings for ground truth. Most of the methods have a large num-
ber of parameters that could theoretically be adjusted separately
for each scene. As we believe this is not an option in practical
use, we rely mostly on Mitsuba’s default parameters that appear to
be rather carefully chosen. The set of mutators, length of Markov
chains, and maximum path length were chosen on a per-scene ba-
sis. In all cases, the same set of mutators and mutator parameters
were used for VMLT and our method. In particular, we use mani-
fold exploration in all scenes. Unless stated otherwise, we use the
MLT methods for indirect light only, and direct lighting is com-
puted separately using low discrepancy sampling. Russian roulette
starts from the fifth bounce in all scenes.

We compare the algorithms by showing non-converged images ren-
dered with a fixed time budget. While deviations from ground
truth are guaranteed to disappear over time, the images in-
clude algorithm-specific artifacts, such as high-magnitude outliers
(BDPT) or brightness deviations between image regions and miss-
ing specular highlights (VMLT). Such uneven convergence is char-
acteristic to all Metropolis algorithms that use long chains: once a
narrow region of high-throughput paths is found, local exploration
distributes its energy on the screen, producing a sudden change.
If the region is small and consequently very difficult to find, this
can happen practically at any time in the rendering process — even
when the image seems otherwise converged.

Figure 8 visualizes a number of concepts from our algorithm in the
LAMP scene. The second row demonstrates that our method places
most of the samples around gradients in the image, whereas VMLT
spends them on bright areas of the image. Gradients are shown
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a) LAMP rendered using an unbounded number of bounces

b) Our sample count c) VMLT sample count

d) x gradient (absolute value) e) y gradient (absolute value)

f) Irreversible g) Closeup of indirect light only

Figure 8: a) The LAMP scene with full lighting. The closeups b–g
use indirect lighting only. b) and c) show where the samples are de-
posited by our algorithm and VMLT. d) and e) visualize horizontal
and vertical gradients. f) marks the pixels where irreversible shifts
were encountered. Predictably, these concentrate around geometric
edges, but also around shadow boundaries and caustics. The close-
ups were rendered at a reduced resolution to make the pixel-scale
features more visible.

next, and “irreversible” highlights pixels where irreversible shifts
occurred frequently (Section 4.2.2).

Table 1 gives scene-specific details and lists the obtained PSNRs.
BDPT does reasonably well on the two simplest scenes where it
can reliably find the contributing paths. KMLT and ERPT perform
quite similarly to each other, giving a significant improvement over
BDPT in the three more difficult scenes. ERPT is particularly good
in TORUS. Of the comparison methods VMLT generally beats the
rest by a wide margin, and our method consistently improves upon

Our (34.2 dB) VMLT (32.4 dB)

Figure 9: Ground truth and result image closeups from SIBENIK.

it, by up to 5.4 dB. Our method can afford approximately half as
many samples as VMLT within a fixed time budget because our
samples are more expensive due to the offset path generation and
computation of the Jacobian.

SIBENIK and DOOR are difficult for BDPT, ERPT, and KMLT.
VMLT uses long Markov chains (20k samples), allowing it to more
thoroughly explore the high-contribution areas of path space, re-
sulting in vastly improved convergence. Our algorithm retains this
desirable property, and further improves the result by 2–4 dB.

TORUS demonstrates that our algorithm works also in presence of
difficult specular transport. This is a challenging scene because the
path space is fragmented into separate narrow regions of high con-
tribution. Our method suffers from this more than VMLT because
finite differencing makes an already difficult path throughput func-
tion even more so. In VMLT and our method only the bidirectional
mutator [Veach and Guibas 1997] is allowed to change the path con-
figuration (number of vertices, type of vertices) and its acceptance
probability is low in this scene. This makes it hard for the sampler
to reliably move between modes of specular transport, reducing the
effectiveness of long Markov chains.

In LAMP and SPONZA our method shows a 4–5 dB advantage over
VMLT. As for the characteristic artifacts of our method (which will
disappear over time), the noise around sharp discontinuities disap-
pears slower than the noise from smooth areas, and can therefore
be visible in non-converged images.

We further investigated the effect of the number of edge pixels in
the image. We studied this in SPONZA where the vast majority
of the edges seen by our algorithm come from textures, by tiling
the repetitive textures four times in each direction (16× more edge
pixels). VMLT lost 0.1 dB and we lost 0.7 dB. As expected, we
are slightly more sensitive to the density of edge pixels, but we still
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Figure 10: Closeups of result images from DOOR.

maintained an almost 5 dB lead even with the dense textures.

8 Analysis and Discussion

To further understand how our method behaves with respect to the
free parameter α, let us examine the characteristics of the result-
ing approximation error. Figure 12 shows a series of closeups of
SPONZA rendered with different values of α, along with their dif-
ferences from the ground truth. The value of α directly affects the
frequency content of the error: higher values distribute a consid-

Our (29.8 dB) VMLT (29.8 dB) ERPT (28.9 dB)

Figure 11: Ground truth and result image closeups from TORUS.

Scene Resolution Time PSNR (dB) Max path
(min) Our VMLT KMLT ERPT BDPT length

SIBENIK 1080×720 10 34.2 32.4 19.7 24.0 14.4 6
DOOR 1280×720 20 37.8 34.2 23.9 24.6 22.3 12
TORUS 1024×768 5 29.8 29.8 22.5 28.9 19.2 6
LAMP 1280×720 10 38.8 34.8 36.4 31.7 35.2 ∞
SPONZA 1024×768 2.5 39.6 34.2 29.3 31.7 32.3 ∞

Table 1: Details and PSNR measurements from our test scenes.
Measured from floating point pixel data, before gamma correction.

erable part of the error on high frequencies, whereas lower values
concentrate the error on low frequencies. The choice of α thus al-
lows us to make a tradeoff between low and high frequency errors
in order to maximize the overall PSNR.

The sampling phase of our algorithm calculates Monte Carlo ap-
proximation Ig of the ideal primal domain image R, as well as
approximations Idx and Idy of its gradients Rdx and Rdy , respec-
tively. To study the effect of finite differencing on the signal, we
take the Fourier transform of Rdx:

F{Rdx} = F{R(x+1, y)−R(x, y)} = (eiωx−1)F{R}, (18)

and similarly for Rdy . The factor eiωx − 1 is the frequency re-
sponse of the finite difference operator, which we denote by Hdx.
The corresponding amplitude response is given by the absolute
value |Hdx| = 2 sin

∣∣ 1
2
ωx
∣∣. Finite differencing thus amplifies the

Nyquist frequency ωx = π by a factor of two and attenuates low
frequencies roughly proportional to |ωx|, killing the DC term com-
pletely. Since the energy of natural images is known to be dis-
tributed roughly according to 1/ω2, we can expect R to contain
most of its energy on the same frequencies that are attenuated the
most by Hdx. Rdx thus contains significantly less energy than R;
the difference is, for instance, 18.5 dB in SPONZA.
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α = 0 α = 0.04 α = 0.20 α = 1.00 α = ∞
(28.1 dB) (31.4 dB) (32.9 dB) (32.8 dB) (27.1 dB)

Figure 12: SPONZA with indirect light only. Our method typically captures fine detail regardless of the value of α, but when the value is very
small, coarse image estimation is effectively disabled and the color of uniform areas is entirely determined by the noisy edges. When α→∞,
our method becomes equal to VMLT. The closeups use only 256 samples per pixel on the average to highlight noise, and the difference images
have been further amplified.

The frequency content of the approximation error resulting from
Metropolis sampling of Ig and Idx is shown in Figure 13, top. We
can see that Idx has consistently lower error than Ig . This is mainly
because the sampling error is relative in nature, so its magnitude is
dependent on the magnitude of the integrand. The difference of
18.5 dB is, however, offset by the fact that gradients are generally
harder to sample than luminance. We also see that the errors are
concentrated toward low frequencies, especially with Ig . The ex-
planation lies in the mutation strategies, which often propose rela-
tively small perturbations to the path. This leads to a high amount
of correlation between consecutive samples.

After sampling, we run the screened Poisson solver to determine the
final image I . Qualitatively, the Poisson solver can be thought of as
first integrating Idx and Idy by amplifying them roughly inversely
proportional to the frequency, and then forming I by taking the low
frequency content from Ig and the high frequency content from Idx

and Idy , with the cutoff controlled by α. This can be seen by not-
ing that he L2 Poisson solution described by Equation 16 is linear
and translation invariant, allowing an analytic Fourier transform:

F{I} =
α2F{Ig}+H

dxF{Idx}+H
dyF{Idy}

α2 + |Hdx|2 + |Hdy|2
, (19)

where H is used to denote the complex conjugate of H . The gain
of this linear system with respect to Ig and Idx is shown on the top
row of Figure 14. We also illustrate its response to Ig by setting the
gradients to zero (Figure 14, middle row), and similarly for Idx and
Idy by setting Ig to zero (Figure 14, bottom row).

Figure 13, bottom shows the frequency content of the error in I after
the Poisson solver. We only show the results for an L1 solver, as
the difference between L1 and L2 is consistently less than 2 dB in
SPONZA. We also note that the error in I is a direct consequence of
the errors in Ig , Idx, and Idy , meaning that the results in Figure 13,
bottom can be predicted reliably based purely on Figure 13, top and
Equation 19.

The role of α is thus two-fold. First, high α leads to a larger por-
tion of the samples being distributed according to image luminance,
which reduces the sampling error of Ig . Second, as the estimate of
Ig becomes more reliable, the Poisson solver relies more on it when
it comes to low frequencies of I . Although the optimal choice is de-
pendent on the scene, we have found α = 0.20 to work well in all
of our test scenes.
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respect to Ig and Idx in dB. Middle: Contribution of Ig to the
final image, i.e. the result of setting the gradients to zero. Bottom:
Contribution of the gradients, i.e. the result of setting Ig to zero.
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